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ABSTRACT: Enantioselective organocatalytic synthesis of
tetrahydroquinolines has been achieved via an aerobic oxidation
and a 1,5-hydride transfer/cyclization sequence. The feature of
this research is a one-pot transformation of 3-arylprop-2-en-1-ol
derivatives into tetrahydroquinolines using a Ru(VII)-catalyzed
aerobic oxidation and highly efficient internal redox reactions.
The synthetically useful ring-fused tetrahydroquinoline deriva-

tives are obtained in moderate yields and high levels of

enantioselectivity.

he direct functionalization of relatively unreactive C—H

bonds has recently received considerable attention owing
to its intrinsic potential for atom and step economy and
environmental sustainability. A number of efforts have been
devoted to the synthesis of structurally complex and
biologically active organic molecules via C—H functionaliza-
tion to avoid tedious synthetic procedures.' C(sp*)—H bond
functionalization by a hydride shift/cyclization has attracted
much interest for its application in the synthesis of
heterocyclic compounds.” The key feature of this trans-
formation is the 1,5-hydride shift of the C(sp®>)—H bond a to
the heteroatom and subsequent 6-endo cyclization to afford
heterocycle compounds.>® In particular, the C(sp*)—H
functionalization via the 1,5-hydride transfer/cyclization
sequence of o-(dialkylamino)aryl derivatives has attracted
much attention to their ability to afford structurally diverse
heterocycles including tetrahydroquinolines.” Chiral tetrahy-
droquinoline derivatives have emerged as attractive synthetic
targets because of their prevalence in a number of biologically
active compounds and natural products.’ Therefore, the
development of a new and efficient synthetic method for
the preparation of chiral tetrahydroquinoline analogues is of
importance to both organic and medicinal chemistry.”
Recently, several groups reported the enantioselective syn-
thesis of tetrahydroquinolines via an intramolecular redox
process involving direct C(sp’)—H functionalization at a
position a to nitrogen atom.

Enantioselective multicomponent cascade reactions are
useful synthetic transformations, as they allow expedient and
efficient construction of chiral complex molecules. Because
such protocols achieve time, cost, and environmental savings,
and desirable experimental operations including tedious
isolation procedures for each reaction, much effort has been
devoted to the development of new asymmetric cascade
reactions and the conversion of already existing multistep
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syntheses into the one-pot procedures.” A well-established
method is the tandem oxidation process involving oxidative
enamine catalysis and oxidative iminium catalysis."%""
Recently, direct oxidative p-functionalization of simple
aldehydes to f-substituted ones has been achieved through
oxidative enamine catalysis.'' In this, oxidants convert the
enamines to iminium ijons in the presence of the amine
catalyst, which facilitates further nucleophilic addition to
afford f-functionalized products. Related asymmetric oxidative
iminium activation has gained increasing attention.'” This
strategy involves oxidation of an allylic alcohol and
subsequent enantioselective prolinol ether catalyzed iminium
reactions.

As part of a research program related to the enantiose-
lective construction of stereogenic centers,"> we recently
reported an intramolecular version of oxidative enamine
catalysis and 1,5-hydride transfer/cyclization as an approach to
the asymmetric synthesis of tetrahydroquinolines (Scheme
1a)"* However, organocatalytic enantioselective hydride trans-
fer/cyclization reaction cascade reactions involving the in situ
oxidation of allylic alcohols have not been reported (Scheme
1b). Herein, we report an aerobic oxidation and 1,5-hydride
transfer/cyclization sequences allied for the asymmetric
synthesis of ring-fused tetrahydroquinolines (Scheme 2).

To determine suitable reaction conditions for the in situ
oxidation and intramolecular redox reactions of (E)-3-(2-
(dialkylamino)phenyl)prop-2-en-1-ol derivatives 1, we initially
investigated the reaction system with (E)-3-(2-(azocan-1-
yl)phenyl)prop-2-en-1-ol (1d) in the presence of an oxidant
and prolinol derivatives in chloroform at room temperature.
The results of representative intramolecular redox reactions
are summarized in Table 1. The advantages of the TPAP
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Scheme 1. Strategies for the Synthesis of
Tetrahydroquinolines via Oxidative Catalysis/Internal
Redox Reaction
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oxidation process include the use of a catalytic amount of
Ru(VII) and oxygen which is an ideal oxidant. We studied the
effect the amount of tetrapropylammonium perruthenate
(TPAP) as a metal oxidant has on the oxidative coupling
reaction of (E)-3-(2-(azocan-1-yl)phenyl)prop-2-en-1-ol (1d)
using 20 mol % of TPAP with oxygen (balloon), catalyst I
(20 mol %), and 2,4-dinitrobenzenesulfonic acid (DNBS) in
chloroform. The reaction gave a moderate yield (50%) of
product 2d with high enantioselectivity (92% ee) (Table 1,
entry 1). The present catalytic system tolerates a TPAP
loading down to S mol % without compromising both the
yield and enatioselectivity (Table 1, entries 1—4). At high
temperature (40 °C), the yield can be elevated to 70%, but
this slightly decreases the enantioselectivity. To improve the
yield and enantioselectivity, we examined a one-pot two-step
process involving oxidation of (E)-3-(2-(azocan-1-yl)phenyl)-
prop-2-en-1-0ol (1d) with S mol % of TPAP with oxygen
(balloon) at 40 °C in toluene, followed by 1,5-hydride
transfer/cyclization sequences in the presence of catalyst I (20
mol %) with DNBS (20 mol %). The reaction gave a high
yield (70%) of 2d with high enantioselectivity (95% ee)
(Table 1, entry 6). Screening analogues II-IV of catalyst I
revealed that the reactivity and enantioselectivity were
decreased (Table 1, entries 8—10) and III and IV did not
promote the process at all (Table 1, entries 9—10). In
addition, the solvent was found to have an important effect on
the reactivity and enantioselectivity. Among different solvents,
toluene emerged as the best solvent with regard to the yield,
diastereoselectivity, and enantioselectivity (Table 1, entry 15).
Further optimization of reaction conditions was performed by
screening additives. The best result was achieved when the
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Table 1. Optimization of Aerobic Oxidation and
Organocatalytic Intramolecular Redox Reaction Conditions
©\/\/\ TPAP, O,

cat. (20 mol %)
DNBS (20 mol %)

solvent, rt, 3 d
2d
Ar
MAr
H OTMS N OH
I, Ar = 3 5 (CF3)206H3 I, Ar = 3,5~ (CF3)206H3
I, Ar = IV, Ar = Ph

entry cat. TPAP (mol %) solvent yield (%)° dr?  ee (%)°
14 I 20 CHCI, 50 6:1 922
24 I 7 CHCl, 48 s:1 93
37 I s CHCI, 48 s:1 93
4° I 3 CHCI, 30 s:1 92
s 1 s CHCl, 70 s:1 90
6" I 5 CHCI, 70 5:1 95
7° 1l 5 CHCl, 10 5:1 91

b 111 5 CHCI, nr. - -
9b v s CHCI, nr. - -
10° I S DCM 21 nd. 81
11° I 5 TCE 25 nd. 50
12¢ I s THF 8 nd. 52
13¥ I S acetone 6 n.d. 75
14° I 5 CH,CN 50 41 49
1s* I S PhMe 70 s:1 97
1678 1 S PhMe trace n.d. n.d.
179" I S PhMe trace n.d. n.d.
189 1 5 PhMe 13 3.7:1 8
19% 1 5 PhMe 85 3.7:1 38

“Method A: Reactions were carried out with (E)-3-(2-(azocan-1-
yl)phenyl)prop-2-en-1-0l (1d, 0.1 mmol), TPAP, catalyst I (20 mol
%) and DNBS (20 mol %) under O, (balloon) at room temperature.
“Method B: Reactions were carried out with (E)-3-(2-(azocan-1-
yl)phenyl)prop-2-en-1-ol (1d, 0.2 mmol) and TPAP (S mol %) under
O, (balloon) at 40 °C for 1 d, and then catalyst I (20 mol %) and
DNBS (20 mol %) were added at rt. “Combined yield of both
diastereomers. “Diastereomeric ratio was determined by 'H NMR
spectroscopic analysis of the crude reaction mixture. “Enantiopurity of
major diastereomer was determined by HPLC analysis using chiralpak
AS-H. 'Reactions were carried out at 40 °C. $(—)-CSA was used
instead of DNBS. “TsOH was used instead of DNBS. “TfOH was used
instead of DNBS. /TFA was used instead of DNBS.

reaction was conducted with 24-dinitrobenzenesulfonic acid
(DNBS, Table 1, entry 15). Consequently, the best result was
obtained through a one-pot process involving oxidation of
(E)-3-(2-(azocan-1-yl)phenyl)prop-2-en-1-ol (1d) with 5 mol
% of TPAP and oxygen (balloon) at 40 °C in toluene,
followed by 1,5-hydride transfer/cyclization in the presence of
I (20 mol %) with DNBS (20 mol %).

With the optimized conditions in hand, we proceeded to
investigate the scope of the aerobic oxidation and 1,5-hydride
transfer/cyclization sequence with various (E)-3-(2-(dialkyl-
amino)phenyl)prop-2-en-1-ol derivatives 1. All of the
reactions were conducted in toluene to give the corresponding
ring-fused tetrahydroquinolines 2 in moderate yields and high
enantioselectivities (Scheme 3). Products 2a—2p, which
incorporated five- to nine-membered azacycles, were formed
with moderate yields, and moderate-to-high diastereoselectiv-
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Scheme 3. Scope of Aerobic Oxidation and 1,5-Hydride
Transfer/Cyclization® ™
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“Reactions were carried out with 3-arylprop-2-en-1-ol 1 (0.2 mmol)
and TPAP (3.5 mg, 0.01 mmol, S mol %) under O, (balloon) at 40 °C
for 1 d, and then catalyst I (23.9 mg, 0.04 mmol, 20 mol %) and
DNBS (9.9 mg, 0.04 mmol, 20 mol %) were added at rt. ¥ Combined
yield of both diastereomers. ¢ Diastereomeric ratio was determined by
'"H NMR spectroscopic analysis of the crude reaction mixture. *
Enantiopurity of the major diastereomer was determined by HPLC
analysis using chiralpak AS-H (for 2d, 2e, 2f, 2g, 2i, 2j, 2, and 2p), IC
(for 2a, 2b, 2¢, 2h, and 20), IB (for 2k and 2n), and ID (for 2m)
columns. * 40 mol % of catalyst I and DNBS were used.

ities and excellent enantioselectivities (33—95% vyield, 3:1—
20:1 dr, and 80—98% ee) were also observed. A range of
electron-withdrawing and -donating substitutents on the aryl
ring of 3-arylpropanal derivatives 1 provided the correspond-
ing products 2 in excellent enantioselectivities (90—99% ee).
The absolute configuration of the products 2 was determined
by comparison of the oIptical rotation and chiral HPLC data
with literature values.**'*

To illustrate synthetic utility, we also carried out functional
group transformations of tetrahydroquinolines 2. Reductive
amination and Wittig reactions led to 3 and 4 without any
erosion of optical purities (Scheme 4).

In summary, we have developed an enantioselective
synthesis of ring-fused tetrahydroquinolines via Ru(VII)-
catalyzed aerobic oxidation and a 1,5-hydride transfer/
cyclization sequence. The desired products were obtained in
moderate yields and high enantioselectivities through a one-
pot transformation from 3-arylprop-2-en-1-ol derivatives.
Current studies are aimed at developing a related internal
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Scheme 4. Transformation of Tetrahydroquinoline
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redox reaction cascade for the efficient buildup of molecular
complexity.
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